fbba21eb

Особенности архитектуры MIPS компании MIPS Technology



Особенности архитектуры MIPS компании MIPS Technology

Архитектура MIPS была одной из первых RISC-архитектур, получившей признание со стороны промышленности. Она была анонсирована в 1986 году. Первоначально это была полностью 32-битовая архитектура, которая включала 32 регистра общего назначения длиною в 32 бит, 16 регистров плавающей точки и специальную пару регистров для хранения результатов выполнения операций целочисленного умножения и деления. Размер команд составлял 32 бит, в ней поддерживался всего один метод адресации, а адресное пространство также определялось 32 битами. Выполнение арифметических операций определялось стандартом IEEE 754. В компьютерной промышленности широкую популярность приобрели 32-битовые процессоры R2000 и R3000, которые в течение достаточно длительного времени служили основой для построения рабочих станций и серверов компаний Silicon Graphics, Digital, Siemens Nixdorf и др. Процессоры R3000/R3010 работали на тактовой частоте 33 или 40 МГц и обеспечивали производительность на уровне 20 SPECint92 и 23 SPECfp92.

На смену микропроцессорам семейства R3000 пришли новые 64-битовые микропроцессоры R4000 и R4400. (MIPS была первой в компьютерной промышленности компанией выпустившей процессоры с 64-битовой архитектурой). Набор команд этих процессоров (спецификация MIPS II) был расширен командами загрузки и записи 64-разрядных чисел с плавающей точкой, командами вычисления квадратного корня с одинарной и двойной точностью, командами условных прерываний, а также атомарными операциями, необходимыми для поддержки мультипроцессорных конфигураций. В процессорах R4000 и R4400 реализованы 64-битовые шины данных и 64-битовые регистры. В процессорах реализован метод удвоения внутренней тактовой частоты.

Процессоры R2000 и R3000 имели стандартные пятиступенчатые конвейеры команд. В процессорах R4000 и R4400 применяются более длинные конвейеры (иногда их называют суперконвейерами). Количество ступеней в процессорах R4000 и R4400 увеличилось до восьми, что объясняется прежде всего увеличением тактовой частоты и необходимостью распределения логики для обеспечения заданной пропускной способности конвейера. Процессор R4000 может работать с тактовой частотой 50/100 МГц и обеспечивает уровень производительности в 58 SPECint92 и 61 SPECfp92. Процессор R4400 может работать на частоте 50/100 МГц, или 75/150 МГц, показывая уровень производительности 94 SPECint92 и 105 SPECfp92.

Процессоры R4000 имели внутреннюю кэш-память емкостью 16 Кбайт, разделенную на 8-Кб кэш команд и 8-Кб кэш данных. С точки зрения реализации кэш-памяти процессор R4400 имеет более развитые возможности. Он выпускается в трех модификациях: PC (Primary Cash) - имеет внутренние кэши команд и данных емкостью по 16 Кбайт. Процессор в такой конфигурации предназначен главным образом для дешевых моделей рабочих станций. SC (Secondary Cash) содержит логику управления кэш-памятью второго уровня. MC (Multiprocessor Cash) - использует специальные алгоритмы обеспечения когерентности и согласованного состояния памяти для многопроцессорных конфигураций.

Компания MIPS объявила о создании своего нового суперскалярного процессора R10000, который в ближайшем будущем должен появиться на рынке. По заявлениям представителей MIPS Technology R10000 обеспечивает пиковую производительность в 800 MIPS при работе с внутренней тактовой частотой 200 МГц за счет обеспечения выдачи для выполнения четырех команд в одном такте синхронизации. При этом он обеспечивает обмен данными с кэш-памятью второго уровня со скоростью 3.2 Гбайт/с.

Чтобы обеспечить столь высокий уровень производительности в процессоре R10000 реализованы многие последние достижения в области технологии и архитектуры процессоров. На Рисунок 8.9 показана блок-схема этого микропроцессора.

Кэш-память данных первого уровня процессора R10000 имеет емкость 32 Кбайт и организована в виде двух одинаковых банков размером по 16 Кбайт, что обеспечивает двухкратное расслоение при выполнении обращений к этой кэш-памяти. Каждый банк представляет собой двухканальную множественно-ассоциативную кэш-память с размером строки (блока) в 32 байта. Кэш данных индексируется с помощью виртуального адреса и хранит теги физических адресов памяти. Такой метод индексации позволяет выбрать подмножество кэш-памяти в том же такте, в котором формируется виртуальный адрес. Однако для того, чтобы поддерживать когерентность с кэш-памятью второго уровня, в кэше первого уровня хранятся теги физических адресов памяти.

Интерфейс кэш-памяти второго уровня процессора R10000 поддерживает 128-битовую магистраль данных, которая может работать с тактовой частотой 200 МГц, обеспечивая скорость обмена 3.2 Гбайт/с. Все стандартные синхронные сигналы управления статической памятью вырабатываются внутри процессора. Минимальный объем кэш-памяти второго уровня составляет 512 Кбайт, максимальный размер - 16 Мбайт. Размер строки этой кэш-памяти программируется и может составлять 64 или 128 байт.

Объем внутренней двухканальной множественно-ассоциативной кэш-памяти команд составляет 32 Кбайт. Команды частично декодируются до их размещения в кэше команд. При этом к каждой команде добавляются 4 дополнительных бит, которые указывают исполнительное устройство, в котором она будет выполняться. Размер строки кэш-памяти команд составляет 64 байта.

Устройство переходов процессора может декодировать и выполнять одну команду перехода в каждом такте. Поскольку за каждой командой перехода следует слот задержки, максимально могут быть выбраны одновременно две команды перехода, но только одна более ранняя команда перехода может декодироваться в данный момент времени. Бит признака перехода добавляется к каждой команде во время декодирования команд. Эти биты используются для пометки команд перехода в конвейере выборки команд. Направление условного перехода прогнозируется с помощью специальной памяти, которая хранит историю выполнения переходов в прошлом. Двухбитовый код в этой памяти обновляется каждый раз, когда принято окончательное решение о направлении перехода. Все команды, выбранные вслед за командой условного перехода, считаются условными (спекулятивными). Это означает, что в момент их выборки заранее не известно, будет ли завершено их выполнение. Процессор допускает предварительное прогнозирование направления четырех команд условного перехода, которые могут разрешаться в произвольном порядке. Специальный стек переходов содержит строку на каждую выполняемую спекулятивно команду условного перехода. Каждая строка этого стека содержит информацию, необходимую для восстановления состояния процессора, если спекулятивные команды перехода были предсказаны неверно. Стек переходов позволяет быстро и эффективно восстановить конвейер, если прогноз направления перехода оказался неверным.



Содержание раздела