fbba21eb

Пример построения системы на базе



Рисунок 8.11. Пример построения системы на базе микропроцессора Alpha 21066


Конструкция поддерживает до четырех банков динамической памяти, каждый из которых может управляться независимо, что дает определенную гибкость при организации памяти и ее модернизации. Один из банков может заполняться микросхемами видеопамяти (VRAM) для реализации дешевой графики. Контроллер памяти прямо работает с видеопамятью и поддерживает несколько простых графических операций.

Высокоскоростная шина PCI имеет ряд привлекательных свойств. Помимо возможности работы с прямым доступом к памяти и программируемым вводом/выводом она допускает специальные конфигурационные циклы, расширяемость до 64 бит, компоненты, работающие с питающими напряжениями 3.3 и 5 В, а также более быстрое тактирование. Базовая реализация шины PCI поддерживает мультиплексирование адреса и данных и работает на частоте 33 МГц, обеспечивая максимальную скорость передачи данных 132 Мбайт/с. Шина PCI непосредственно управляется микропроцессором. На Рисунок 8.11 показаны некоторые высокоскоростные периферийные устройства: графические адаптеры, контроллеры SCSI и сетевые адаптеры, подключенные непосредственно к шине PCI. Мостовая микросхема интерфейса ISA позволяет подключить к системе низкоскоростные устройства типа модема, флоппи-дисковода и т.д.

В настоящее время выпущена модернизированная версия этого микропроцессора. Как и его предшественник, новый кристалл Alpha 21066A помимо интерфейса PCI содержит на кристалле интегрированный контроллер памяти и графический акселератор. Эти характеристики позволяют значительно снизить стоимость реализации систем, базирующихся на Alpha 21066A, и обеспечивают простой и дешевый доступ к внешней памяти и периферийным устройствам. Alpha 21066A имеет две модификации в соответствии с частотой: 100 МГц и 233 МГц. Модель с 233 МГц обеспечивает производительность 94 и 100 единиц, соответственно, по тестам SPECint92 и SPECfp92.

Новейший микропроцессор Alpha 21164 представляет собой вторую полностью новую реализацию архитектуры Alpha. Микропроцессор 21164, представленный в сентябре 1994 года, обеспечивает производительность 330 и 500 единиц, соответственно, по шкалам SPECint92 и SPECfp92 или около 1200 MIPS и выполняет до четырех инструкций за такт. На кристалле микропроцессора 21164 размещено около 9,3 миллиона транзисторов, большинство из которых образуют кэш. Кристалл построен на базе 0.5 микронной КМОП технологии компании DEC. Он собирается в 499-контактные корпуса PGA (при этом 205 контактов отводятся под разводку питания и земли) и рассеивает 50 Вт при питающем напряжении 3.3 В на частоте 300 МГц.

Ключевыми моментами для реализации высокой производительности является суперскалярный режим работы процессора, обеспечивающий выдачу для выполнения до четырех команд в каждом такте, высокопроизводительная неблокируемая подсистема памяти с быстродействующей кэш-памятью первого уровня, большая, размещенная на кристалле, кэш-память второго уровня и уменьшенная задержка выполнения операций во всех функциональных устройствах.

На Рисунок 8.12 представлена блок-схема процессора, который включает пять функциональных устройств: устройство управления потоком команд (IBOX), целочисленное устройство (EBOX), устройство плавающей точки (FBOX), устройство управления памятью (MBOX) и устройство управления кэш-памятью и интерфейсом шины (CBOX). На рисунке также показаны три расположенных на кристалле кэш-памяти. Кэш-память команд и кэш-память данных представляют собой первичные кэши, реализующие прямое отображение. Множественно-ассоциативная кэш-память второго уровня предназначена для хранения команд и данных. Длина конвейеров процессора 21164 варьируется от 7 ступеней для выполнения целочисленных команд и 9 ступеней для реализации команд с плавающей точкой до 12 ступеней при выполнении команд обращения к памяти в пределах кристалла и переменного числа ступеней при выполнении команд обращения к памяти за пределами кристалла.

Устройство управления потоком команд осуществляет выборку и декодирование команд из кэша команд и направляет их для выполнения в соответствующие исполнительные устройства после разрешения всех конфликтов по регистрам и функциональным устройствам. Оно управляет выполнением программы и всеми аспектами обработки исключительных ситуаций, ловушек и прерываний. Кроме того, оно обеспечивает управление всеми исполнительными устройствами, контролируя все цепи обхода данных и записи в регистровый файл. Устройство управления содержит 8 Кбайт кэш команд, схемы предварительной выборки команд и связанный с ними буфер перезагрузки, схемы прогнозирования направления условных переходов и буфер преобразования адресов команд (ITB).

Целочисленное исполнительное устройство выполняет целочисленные команды, вычисляет виртуальные адреса для всех команд загрузки и записи, выполняет целочисленные команды условного перехода и все другие команды управления. Оно включает в себя регистровый файл и несколько функциональных устройств, расположенных на четырех ступенях двух параллельных конвейеров. Первый конвейер содержит сумматор, устройство логических операций, сдвигатель и умножитель. Второй конвейер содержит сумматор, устройство логических операций и устройство выполнения команд управления.

Устройство плавающей точки состоит из двух конвейерных исполнительных устройств: конвейера сложения, который выполняет все команды плавающей точки, за исключением команд умножения, и конвейер умножения, который выполняет команды умножения с плавающей точкой. Два специальных конвейера загрузки и один конвейер записи данных позволяют командам загрузки/записи выполняться параллельно с выполнением операций с плавающей точкой. Аппаратно поддерживаются все режимы округления, предусмотренные стандартами IEEE и VAX.

Устройство управления памятью выполняет все команды загрузки, записи и барьерные операции синхронизации. Оно содержит полностью ассоциативный 64-строчный буфер преобразования адресов (DTB), 8 Кбайт кэш-память данных с прямым отображением, файл адресов промахов и буфер записи. Длина строки в кэше данных равна 32 байтам, он имеет два порта по чтению и реализован по принципу сквозной записи. Он индексируется разрядами физического адреса и в тегах хранятся физические адреса. В устройство управления памятью в каждом такте может поступать до двух виртуальных адресов из целочисленного устройства. DTB также имеет два порта, поэтому он может одновременно выполнять преобразование двух виртуальных адресов в физические. Команды загрузки обращаются к кэшу данных и возвращают результат в регистровый файл в случае попадания. При этом задержка составляет два такта. В случае промаха физические адреса направляются в файл адресов промахов, где они буферизуются и ожидают завершения обращения к кэш-памяти второго уровня. Команды записи записывают данные в кэш данных в случае попадания и всегда помещают данные в буфер записи, где они ожидают обращения к кэш-памяти второго уровня.



Содержание раздела